go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number BB/L000105/1
Title Rational Engineering of Advanced Clostridia for Transformational Improvements in Fermentation (REACTIF)
Status Completed
Energy Categories Renewable Energy Sources(Bio-Energy, Other bio-energy) 40%;
Renewable Energy Sources(Bio-Energy, Production of other biomass-derived fuels (incl. Production from wastes)) 30%;
Renewable Energy Sources(Bio-Energy, Production of transport biofuels (incl. Production from wastes)) 30%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields BIOLOGICAL AND AGRICULTURAL SCIENCES (Biological Sciences) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Prof N (Nigel ) Minton
No email address given
Centre for Biomolecular Sciences
University of Nottingham
Award Type Research Grant
Funding Source BBSRC
Start Date 01 April 2013
End Date 31 March 2016
Duration 36 months
Total Grant Value £368,068
Industrial Sectors Transport Systems and Vehicles
Region East Midlands
Programme ERA-NET Industrial Biotechnology (ERANETIB)
 
Investigators Principal Investigator Prof N (Nigel ) Minton , Centre for Biomolecular Sciences, University of Nottingham (99.998%)
  Other Investigator Dr K (Klaus ) Winzer , Centre for Biomolecular Sciences, University of Nottingham (0.001%)
Dr Y (Ying ) Zhang , Centre for Biomolecular Sciences, University of Nottingham (0.001%)
Web Site
Objectives WHO WILL BENEFIT?
The overall aim of this project is to enhance and extend the capabilities of solventogenic bacteria in terms of fuel and chemical production from renewable and sustainable resources. As this is an Industrial Partnership, the primary beneficies other than the Academic groups involved (University of Nottingham, Ulm and Goettingen) is GBL and Weyland. They will directly commercialise all useful strains that emerge from the project and will have first refusal on any foreground intellectual property that arises.
All parties have extensive global networks of existing commercial contacts and strategic partners. For example, GBL have partnerships with Guangxi Jinyuan Biochemical and Lianyungang Union of Chemicals in China. Nottingham have partnerships/ collaborations with EBI, Qteros, Lanxess and Genencor (N America), Evonik, Universities of Munich, Ulm and Berlin (Germany), TMO Renewables Ltd, Invista and Unilever (UK), Metabolic Explorer Ltd, INRA and CNRS (France), Chinese Academy of Sciences (Shanghai and Tsinghau, China), the Mumbai Institute of Chemical Technology (India) and LanzaTech (New Zealand). Working together, the consortium will seek to maximise these links for the benefit of all partner organisations involved.
The successful commercialization of anticipated outputs will have a rapid and global impact for both humanity and the environment. It will reduce greenhouse gas emissions and environmental pollution, provide an alternative to the use of food or farm resources for the production of low cost low carbon fuels and chemicals. It is therefore of benefit to society, ultimately impacting on health and well-being.
HOW WILL THEY BENEFIT?
Project outcomes will and allow improved fermentation process economics and product diversity, thus encouraging more rapid and wide spread adoption of clostridia-based butanol fermentation as a process to produce high volumes of low cost butanol as a chemical commodity and potentially as a biofuel. The partnership are anticipated to directly benefit from the outputs of the project through their commercial adoption via the pipeline and partnerships established by GBL and Weyland to both scale-up and commercially produce fuel and chemical products by clostridia fermentation. Additionally the partnership intends to explore strategic licensing deals with third party organisations. These will take the form of up front and milestone payments as well as ongoing royalty streams.
The successful scale-up and commercialization of processes will assist the UK and Europe in meeting challenging 'greenhouse' gas reduction targets, and contribute to indirectly to food security. The generation of butanol from cellulosic feedstocks will additionally impact on reducing reliance on fossil reserves, and therefore increase national fuel security.
Abstract The clostridial-based butanol fermentation is an old industrial process, developed in 1912. The process became uneconomic in the mid 1950's when it could no longer compete with the petrochemical industry. Although recently revived in China, many of the plants are struggling because the technology is not sufficiently advanced and is reliant on expensive and non-sustainable starchy feedstocks.
This project seeks to rectify this deficiency through the development of improved commercial strains able to achieve high butanol productivity and capable of fermenting non-food, cellulosic feedstocks. Strains will exhibit greater tolerance to commercial process conditions, feedstock inhibitors and butanol end titres and offer a transformational change to fermentation performance and process economics. Results will include:-
-Reproducible feedstock & defined process conditions
-Advanced methods for strain selection (transposon mediated and continuous culture)
-The identification and characterisation of beneficial tolerance traits
-Advanced GBL production strains proven at pilot scale (and ready to commercialize)
-Novel integrated process design for hydrolysis/fermentation
-Cost models (and cost savings) & calculations for energy & GHG emissions
The Consortium has an excellent balance between industry and academia that fills the entire supply chain (from feedstock to product). Three world class academic groups (University of Nottingham, Ulm & Gottingen) are complemented and supported by two industrial partners (Weyland & Green Biologics) who will provide significant technical input, financial support, commercial steerage and market opportunities. GBL is a world leader in commercialization activities for biobutanol fermentation and Weyland is a world leading developer of sugars from cellulosic feedstocks. Together the industrial partners will deliver an integrated process solution for producing butanol from a cellulosic feedstock and demonstrate at pilot-scale.
Publications (none)
Final Report (none)
Added to Database 14/04/14